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Abstract

This paper presents our submitted system to the 1J-
CAI 2025 Workshop and Competition on “Deep-
fake Detection, Localization, and Interpretability”
Challenge Track 1 (DDL-I). This track focuses on
dual objectives: image-level forgery classification
and pixel-level localization of manipulated regions.
Given that tampering operations primarily focus on
semantic editing of local facial objects, we formu-
late the deepfake detection task as a mesoscopic-
level pattern recognition problem. The proposed
system uses Transformer- and CNN-based encoder-
decoders to extract macro and micro artifact char-
acteristics respectively, and integrates them into
mesoscopic artifact representations to achieve pre-
cise detection of object-level tampering. We eval-
uate our best system on the test set of the track,
achieving a comprehensive score of 0.805.

1 Introduction

Recent rapid advances in deep learning, especially gener-
ative adversarial networks (GANs) [Goodfellow et al., 2014]
and diffusion models (DMs)[Ho et al., 20201, have elevated
facial forgery techniques (e.g. face swapping, face reenact-
ment, full-face synthesis, and face editing) to photorealistic
levels of deception. Simultaneously, these deepfake technolo-
gies are being weaponized for malicious purposes—including
fake news propagation, identity fraud, and political defama-
tion—severely undermining global social trust system.

Both academia and industry have begun paying close at-
tention to deepfake detection, releasing a series of related
technologies and datasets. However, current solutions pre-
dominantly adopt binary classification frameworks, neglect-
ing precise analysis of forged regions. This not only com-
promises the reliability of authenticity judgments but may
also obscure underlying model biases. Consequently, the task
of deepfake detection and localization (DDL) has been pro-
posed and received widespread attention. This task requires
models to not only identify whether a facial image has been
manipulated but also segment the precise tampered regions.
DDL presents greater challenges than binary classification,
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as it demands the model to understand the spatial distribu-
tion patterns of forgery - making it particularly valuable for
scenarios such as forensic investigation and content moder-
ation that require interpretability. Although some progress
has been made, current DDL research remains fundamen-
tally limited by insufficient datasets. As shown in Table 1,
only two datasets [He er al., 2021; Zhou et al., 2021] re-
leased in the past five years provide manipulated region an-
notations. Furthermore, existing datasets are insufficient in
terms of scale, forgery diversity and scenario diversity.

Fortunately, the recent "Deepfake Detection, Localiza-
tion, and Interpretability” workshop and competition in 1J-
CAI 2025 released a large-scale high-quality deepfake dataset
[Miao et al., 2025; Zhang er al., 2024a; Miao et al., 2024,
Miao et al., 2023; Zhang et al., 2024b], which provides over
1.5 million forged face samples with pixel-level manipula-
tion annotations, involving 61 forgery algorithms and cover-
ing both single-face and multi-face scenarios. This dataset
has significantly advanced the development of DDL technol-
ogy, effectively enhancing the interpretability of deepfake de-
tection. We are very excited to participate in this competition
and contribute to the establishment of a verifiable and trace-
able deepfake analysis system.

This paper presents our contributions to the IJCAI 2025
DDL-Challenge Track 1 for facial image detection and local-
ization (termed DDL-I). Through systematic observation, we
identify that most facial manipulations (e.g., identity swap-
ping, gender transformation, and expression modification)
aim to deceive the audience by editing object-level seman-
tic components (e.g., mouth, eyes) of facial images. Given
that such manipulations involve both macro-level semantic
changes (e.g., identity, age) and micro-level consistency dis-
ruptions (e.g., color, texture), we propose analyzing forgery
from a mesoscopic perspective, i.e., integrating macro and
micro features into mesoscopic-level artifact representations
to achieve precise detection of object-level semantic tamper-
ing. In constructing the DDL-I system, we primarily drew
upon the open-source project Mesorch! [Zhu et al., 2025] as
our foundational framework. In summary, our system first
encodes the macro and micro artifacts using the Transformer-
and CNN-based backbone respectively; Then, in the decod-
ing phase, the pixel-level forgery localization results are ob-
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Dataset Year | Tasks | Deepfake Methods #Fake Multi-Face
FaceForensics++ [Rossler et al., 2019] 2019 Cla 4 4K videos -
Celeb-DF [Li et al., 2020] 2020 Cla 1 5K+ videos -
DFDC [Dolhansky et al., 2020] 2020 Cla 8 0.1M+ videos -
ForgeryNet [He et al., 2021] 2021 | Cla/SL 15 1M+ images -
FFIW [Zhou et al., 2021] 2021 | Cla/SL 3 10K videos v
OpenForensics [Le ef al., 2021] 2021 SL 3 0.1M image v
DeepFakeFace [Song et al., 2023] 2023 Cla 3 90K images -
DiffusionDeepfake [Bhattacharyya et al., 2024] | 2024 Cla 2 0.1M+ images -
DF40 [Yan et al., 2024] 2024 Cla 40 1M+ images -
DDL-I (IJCAI 2025-DDL Challenge) 2025 | Cla/SL 61 1.5M+ images v

Table 1: Comparison of existing deepfake datasets

tained by weighted fusion of multi-scale feature maps, and
on this basis, the image-level authenticity predictions are ob-
tained by global max pooling operation. In the training phase,
we implement extensive data augmentation techniques and
use cross-entropy loss to optimize all model parameters. Dur-
ing inferencing, we apply post-processing techniques such
as TTA [Krizhevsky et al., 2012] to further improve perfor-
mance. Detailed implementations are described in Section 3
and Section 4. In the final assessment, our best-performing
model achieves a comprehensive score of 0.805.

2 Related Work

2.1 Region-level forgery detection

Early approaches for tampering detection and localiza-
tion in facial images primarily focused on region-level detec-
tion. Some methods leveraged object detection frameworks
such as Faster R-CNN [Ren et al., 2015] to quickly local-
ize suspicious regions in face images. For instance, [Zhou
et al., 2018] proposed a two-stream Faster R-CNN network
trained in an end-to-end manner to detect tampered regions in
images. Meanwhile, some works adopted sequential model-
ing techniques such as LSTMs [Hochreiter and Schmidhuber,
19971 to better capture inter-region dependencies. [Bappy et
al., 2019] divided an image into patches, extracted resam-
pling features, and applied LSTMs to model spatial depen-
dencies across patches, thereby achieving automatic localiza-
tion of tampered regions.

2.2 Pixel-level forgery detection

With the increasing demand for fine-grained forensic
analysis, pixel-level tampering segmentation methods have
attracted growing attention. These methods often employ
fully convolutional networks (FCNs), attention mechanisms,
or multi-scale feature fusion designs to produce binary masks
that delineate manipulated regions. For example, [Dang
et al., 2020] introduced an attention-based refinement strat-
egy to enhance feature representation for pixel-wise local-
ization. Li et al [Li et al., 2020] proposed the Face X-ray
approach, which models blended boundaries to reveal the in-
trinsic structure of manipulated areas, effectively overcoming
the limitations of traditional low-level forgery traces. [Liu
et al., 2022a] developed a dual-stream FCN that integrates

multi-scale and multi-path information, significantly improv-
ing both accuracy and robustness through end-to-end train-
ing. [Wang er al., 2023] further fused global features with
local patch-level cues to capture subtle local distortions, en-
riching pixel-level localization capabilities. In recent years,
multimodal and explainable detection methods have become
research hotspots. [Shao er al., 2024] proposed a hierarchical
reasoning mechanism for multimodal image-text pairs, which
localizes tampered regions in both images and text, adapt-
ing to new types of forgeries. [Xu er al., 2024] introduced
the FakeShield framework, an explainable image forgery de-
tection and localization approach aided by large multimodal
language models. Similarly, the SIDA framework proposed
by [Huang et al., 2024] achieves pixel-level localization of
forged regions and provides natural language explanations by
integrating visual and linguistic information, significantly en-
hancing the transparency and robustness of detection.

3 Method

3.1 Overall architecture

The framework of our system is shown in Figure 1, which
includes four key modules: DCT-based frequency divider (D-
FD), CNN-based microscopic artifact extractor (C-MiAE),
Transformer-based macroscopic artifact extractor (T-MaAE),
and adaptive weighting module (AWM). Specifically, D-FD
first decomposes the input RGB image into high-frequency
(HF) and low-frequency (LF) components, which are then
concatenated with the original image along the channel di-
mension to generate high/low frequency-enhanced images.
The HF/LF components are then fed into C-MiAE mod-
ule and T-MaAE module respectively for encoding-decoding
based artifact recognition, where C-MiAE is responsible for
capturing fine-grained tampering traces from a micro per-
spective, while T-MaAE is responsible for revealing suspi-
cious semantic patterns from a macro perspective. Both mod-
ules output feature maps at four different scales of the de-
coder. Subsequently, the AWM module performs weighted
fusion of the multi-scale feature maps output by the two
modules, generating a micro-forgery prediction mask and a
macro-forgery prediction mask respectively. Note that this
module takes the original RGB image and its HF/LF com-
ponents as input, generating a series of normalized weight
matrices, where each element in each matrix reflects the im-
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Figure 1: The framework of our system for IJCAI 2025 DDL-Challenge Track 1 (deepfake detection and localization, DDL-I).

portance of every pixel at the corresponding scale. Finally,
the micro and macro prediction masks are fused to generate
the final forgery mask. Then, based on the pixel-level forgery
localization results, image-level authenticity prediction is ob-
tained through a global max pooling (GMP) operation.

3.2 Model learning

The original Mesorch project employs a pixel-level
forgery prediction head and an image-level forgery prediction
head, and the total loss function of the model is the weighted
sum of these two losses. As follows:

LosSoa1 = e LosSpixel (M, M)

_ 1
+ (1 — ) LoSSimage (H (M), y) )

where M is the predicted pixel-level forgery mask, M is the
groundtruth mask, H is the predicted image-level label and y
is the groundtruth label. However, the dual loss (classification
loss + mask loss) needs to balance classification confidence
and localization accuracy, but there may be a conflict in opti-
mization objectives between the two: The classification task
focuses on global features while the localization task heavily
relies on pixel-level supervision. Their weighted fusion not
only requires manual weight adjustment (i.e. hyperparameter
«) but also easily induces gradient competition, ultimately
compromising model performance.

To address this issue, we replace the detection head with
a global max pooling (GMP) layer, which is non-trainable.
Consequently, the total loss is reduced to a single pixel-level
mask-based entropy-cross loss:

Lossiotal = L0SSpiger(M, M). 2

j = GMP(M). 3)

The single-loss strategy avoids suboptimal weight allocation
and simplifies the training process. And according to exper-
imental comparison, when using this single mask loss, the
model performs better in minimizing missed detections of
forged pixels and suppressing low-confidence artifacts. In
addition, compared with the stacked structure of traditional

convolutions and linear layers, GMP operation directly fo-
cuses on local salient forged features by extracting the maxi-
mum value from the spatial dimension. For example, forged
regions often exhibit edge anomalies, inconsistent noise dis-
tributions, or texture discontinuities—such features typically
manifest as local peak responses in activation maps. By pre-
serving the maximum response of the feature map, GMP ef-
fectively suppresses irrelevant background interference and
enhances the model’s sensitivity to forgery traces.

4 Experiment

4.1 Data analysis

We have made a preliminary statistic on the size of the
images in the competition training set. As shown in Figure 2,
we found that all forged images can be mainly divided into
the following three types:

* Single small face image: The image size is smaller than
(384, 384), and there is only one face in the image. Such
deepfake images account for approximately 12.6% of
the entire training set, and most of their tampered re-
gions are the entire face.

* Single big face image: The image size is larger than
(384, 384), and there is only one face in the image. Such
deepfake images account for approximately 32.6% of
the training set, and most of their tampered regions are
the eyes, nose, mouth, hair, etc.

e Multi-face image: The image has unequal length and
width, and contains multiple faces. Such images account
for approximately 54.8% of the training set, with most
of their manipulations targeting the entire facial region.

4.2 Data augmentation

Dataset analysis reveals that single small face images ac-
count for a relatively small proportion in the training set,
which may lead to insufficient learning of such forgery im-
ages. To alleviate this issue, we crop multiple-face images
into individual single-face images, as shown in Figure 3.
Specifically, we used the Deepface [Taigman er al., 2014]
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Figure 2: The statistics of the size distribution of fake faces in the

training set.

Figure 3: Expanding the single-face images by cropping multiple-
face images.

tool to detect faces in the images, and then saved and obtained
single small face images. In addition, we also use common
image transformation methods for data augmentation, such as
random cropping, random scaling, random shifting, etc.

4.3 Training details

Regarding model implementation, we chose ConvNext-
base [Liu et al., 2022b] as the backbone for C-MiAE and
Segformer-B3 [Xie et al., 2021] as the backbone for T-MaAE.
We employ PyTorch (v2.6.0) as our training framework and
utilize 8 NVIDIA RTX 4090 GPUs (24GB VRAM) for model
training in this competition. The number of training epochs
is set to 20, the batch size is set to 6 per GPU, and AdamW
[Loshchilov and Hutter, 2017] is used as the optimizer. Dur-
ing training, all images are resized to 512 x 512. The initial
learning rate is set to le-5, Cosine and Warmup are adopted
as learning rate schedulers. The weight decay is set to 0.05,
and the number of warm-up epochs is set to 2.

4.4 Inference details

To further enhance the model’s performance on the three
competition evaluation metrics (i.e. image-AUC, pixel-F1-
score, and pixel-IoU), we implement three post-processing
techniques as follows:

1) Morphological operations (MO) are a set of shape-
based image processing techniques commonly used for post-
processing of binary images or grayscale images. The main
purpose is to change the shape, connectivity, or remove noise
of objects through specific rules. Their core idea is to achieve

fine-grained adjustments by sliding a predefined structural el-
ement (kernel) over the image and performing logical opera-
tions. We use the following three MO methods:

* Erosion: Erode the target edges with a structural el-
ement, shrink the white area, and eliminate isolated
island-like noise.

* Dilation: Dilate the target edges with a structural el-
ement, expand the white area, and fill holes or broken
areas.

* Opening: Erode first and then dilate to retain the main
body and remove small noise.

2) Test-time augmentation (TTA) is a technique that en-
hances the robustness and accuracy of predictions through
data augmentation during the model inference phase. Unlike
using data augmentation only during training, TTA generates
multiple augmented versions of the same input during testing
and combines the prediction results of all versions as the fi-
nal output. In this competition, our TTA ultimately uses three
transformation methods: horizontal flip, vertical flip, and 90-
degree rotation + horizontal flip. For the final mask, the max-
imum value of multiple prediction results is taken, and the
forged confidence score is the average value.

3) Otsu algorithm is an automatic global threshold seg-
mentation method based on grayscale histograms. Its core
idea is to find the optimal segmentation threshold by maxi-
mizing the between-class variance of the foreground (object)
and background, making it suitable for converting grayscale
images into binary images. The binary segmentation of im-
ages can be quickly achieved through the Otsu algorithm.

4.5 Evaluation metrics

This DDL-I competition selects three evaluation metrics
to test the performance of the participating systems. First,
the Area Under the ROC Curve (AUC) is adopted to evaluate
the detection performance. It measures the trade-off between
the true positive rate (TPR) and the false positive rate (FPR)
across different thresholds. Second, the F1 Score and Inter-
section over Union (IoU) are adopted to evaluate the spatial
localization performance. Specifically, the F1 Score is used to
evaluate the balance between precision and recall, especially
under imbalanced class distributions. It is the harmonic mean
of precision and recall:

Precision - Recall 2-TP

Precision + Recall ~ 2- TP + FP + FN
where TP, FP, and FN represent true positives, false positives,
and false negatives, respectively. The IOU measures the over-
lap between the predicted and ground-truth manipulation re-
gions:

F1-Score = 2 -

|Prediction N Ground Truth)|
|Prediction U Ground Truth|

These three metrics jointly assess both the classification ac-
curacy and the spatial localization capability of the systems.

4.6 Ablation study

We conduct a series of ablation experiments on the
competition-provided validation set to determine the optimal
DDL-I system configuration, including backbone selection
and loss function design. The details are as follows.

IoU =




Local Feature Module Global Feature Module AUC F1-Score IoU Avg.
Swin Transformer 0.9992 0.8016 0.7775 0.8594
ConvNeXt
SegFormer 0.9997 0.8019 0.7798 0.8605
Swin Transformer 0.9868 0.7776 0.7426 0.8357
ResNet-50
SegFormer 0.9985 0.7873 0.7539 0.8467

Table 2: Performance comparison of different backbone combinations on the validation set.

Model Loss setting AUC F1-Score TIoU Avg.
Mesorch loc+cls 0.9845 0.7702 0.7322 0.8296
Ours loc 0.9997 0.8019 0.7798 0.8605

Table 3: Performance comparison of different loss settings on the validation set.

4.6.1 Effect of different backbones

For the CNN-based microscopic artifact extractor (C-
MiAE), we evaluate both ResNet-50 [He et al., 2016]
and ConvNeXt-Base [Liu er al., 2022b] as potential back-
bones. For the Transformer-based macroscopic artifact ex-
tractor (T-MaAE), SegFormer-B3 [Xie et al., 2021] and Swin
Transformer-Base [Liu et al., 2021] were selected for com-
parative testing. The performance comparison of different
combinations of CNN backbone and Transformer backbone
is shown in Table 2. It can be seen that the combination of
ConvNeXt-Base and SegFormer-B3 excels in all evaluation
metrics, outperforming other model combinations.

4.6.2 Effect of different loss settings

The original Mesorch project uses a weighted sum of
pixel-level localization loss and image-level classification
loss for model training, while we only utilize a pixel-level
localization loss. Based on the optimal backbone combina-
tion mentioned above, we conduct a comparative analysis of
these two schemes. The performance comparison of different
combinations of CNN and Transformer backbone is shown
in Table 3. It can be seen that our method outperforms the
original Mesorch project in all metrics, showing the superi-
ority of using a single localization loss. We further visualize
the forgery localization effects of two schemes on the valida-
tion set. As shown in Figure 4, the masks generated by our
method are clearer and closer to the groundtruth. Both quan-
titative and qualitative results demonstrate the superior choice
of using a single pixel-level mask-based loss. This not only
reduces the model complexity but also improves the detection
robustness and localization accuracy.

4.6.3 Effect of different post-processing techniques
Furthermore, we demonstrate the contributions of differ-
ent post-processing techniques to our system’s performance.
As shown in Table 4, all three post-processing techniques ef-
fectively enhance performance. Among them, TTA shows
the most significant improvement, achieving a comprehensive
score increase of 0.0084 compared to the base version. The
combination of different techniques can further improve per-
formance compared to using techniques alone, demonstrating

Figure 4: Qualitative analysis between our system and the original
Mesorch on DDL-I task (no post-processing).

their complementary nature.

4.7 Comparison with state-of-the-art

Using the competition’s dataset and evaluation metrics,
we compare the constructed DDL-I system with existing ad-
vanced works (i.e., MVSS-Net [Chen et al., 20211, Trufor
[Guillaro et al., 2023], and IML-ViT [Ma et al., 2023]). All
compared DDL-I methods meet two criteria: 1) Open-source
code availability; 2) Capability for simultaneous detection
and localization. As shown in Table 5, our system demon-
strates significant advantages on the competition validation



Post-Proc. AUC Fl-Score IoU Avg.

None (base) 0.9997 0.8019 0.7798 0.8605
+MO 0.9997 0.8037 0.7869 0.8634
+TTA 0.9998 0.8123  0.7947 0.8689
+Ostu 0.9997 0.8102 0.7913 0.8671
+MO+TTA 0.9998 0.8184 0.7978 0.8720
+MO+Ostu 0.9997 0.8121 0.7963 0.8685
+TTA+Ostu 0.9998 0.8211 0.7982 0.8730
+MO+TTA+Ostu  0.9998  0.8245  0.8038 0.8760

Table 4: Performance comparison of different post-processing tech-
niques on the validation set.

Method AUC F1-Score IoU Avg.
MVSS-Net  0.8933 0.7748 0.7319  0.8000
Trufor 0.9547 0.7873 0.7529  0.8316
IML-Vit 0.9126 0.7920 0.7561  0.8202
Ours 0.9997 0.8019 0.7798  0.8605

Table 5: Performance comparison of different methods. All methods
were trained and validated on the DDL-I competition dataset.

set, outperforming the second-best approach by 0.0403 in
comprehensive performance (i.e., Avg. score). These results
validate the effectiveness of mesoscopic-based facial artifact
analysis framework.

Conclusion

In this work, we present our submitted system for
the IJCAI 2025 DDL-Challenge Track 1 (Deepfake De-
tection and Localization). Our approach formulates facial
object-level manipulation detection task as a mesoscopic pat-
tern recognition problem. We accordingly use CNN- and
Transformer-based encoder-decoders to integrate micro- and
macro-artifact features into mesoscopic-level artifact repre-
sentations, so as to achieve precise detection of object-level
semantic tampering. Through meticulous parameter train-
ing and comprehensive post-processing during inference, our
best system achieves a comprehensive score of 0.805 in the
final official assessment.
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